排名
用户解题统计
过去一年提交了
勋章 ①金银铜:在竞赛中获得第一二三名;②好习惯:自然月10天提交;③里程碑:解决1/2/5/10/20/50/100/200题;④每周打卡挑战:完成每周5题,每年1月1日清零。
收藏
收藏日期 | 题目名称 | 解决状态 |
---|---|---|
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(6)-好基友(5) | 已解决 |
2025-02-26 | 好友步数排名-不考虑反向好友关系 | 已解决 |
2025-02-21 | 专注力强的总用户数 | 已解决 |
2025-02-21 | 计算完播率(按次数) | 已解决 |
2025-02-20 | 快手面试真题(2)同时在线人数峰值 | 已解决 |
2025-02-19 | 滴滴面试真题(4)未完成订单在第二天继续呼叫的比例 | 未解决 |
2025-02-18 | 频道重合指数 | 已解决 |
2025-02-18 | 会员与非会员的日均观看视频数量 | 未解决 |
2025-02-16 | 基于共同兴趣爱好的餐厅推荐(3)-好基友(1) | 已解决 |
2025-02-12 | 至少两门科目大于等于110分的学生 | 已解决 |
2025-02-11 | 连续登录3天及以上 | 已解决 |
2025-02-11 | 7月之后再也没活跃过的用户 | 已解决 |
2025-02-10 | 抖音面试真题(5)新用户的T+1月留存 | 未解决 |
2025-02-10 | 抖音面试真题(3)一次性计算T+3、T+7、T+14留存率(2) | 已解决 |
2025-02-10 | 抖音面试真题(2)一次性计算T+1、T+3、T+7、T+14留存率 | 已解决 |
2025-02-09 | 4分及以下客户去的最后一家餐厅 | 已解决 |
2025-02-09 | 比较每个月客户的拉新质量(2) | 已解决 |
2025-02-07 | 窗口函数(7)三天吃四餐,你特么是不是乔杉? | 已解决 |
2025-02-07 | 窗口函数(3)越来越喜欢召妓,窗口函数用累计(1) | 已解决 |
2025-02-07 | 窗口函数(1)年度前三和每月前三,搞懂排序窗口函数 | 已解决 |
2025-02-07 | 时间日期(5)三腿爱往会所走,全当良心喂了狗 | 已解决 |
2025-02-05 | 时间日期(2)按月统计日花费,一天都不要浪费 | 已解决 |
2025-02-05 | 表连接(3)一直使用一张表,现在开始两张表 | 已解决 |
2025-02-05 | 表连接(1)你们难道都去过?那就试试用InnerJoin | 已解决 |
2025-02-05 | 子查询(1)玩的最嗨那天在做甚?要用Where子查询 | 已解决 |
2025-02-05 | 小结(1)大数据早就能扫黄,找足证据不慌张 | 已解决 |
2025-02-05 | 字符串与通配符(2)好多关键词做规则,可以使用rlike | 已解决 |
2025-02-02 | 红包金额中位数 | 已解决 |
2025-01-30 | 钢铁直男的观看记录 | 已解决 |
2025-01-30 | 只观看放映厅的用户 | 已解决 |
2025-01-30 | 哔哩哔哩面试真题(6)全年会员收入分类 | 未解决 |
2025-01-30 | 哔哩哔哩面试真题(4)每周分摊会员收入 | 已解决 |
2025-01-28 | 统计每一类RFM用户的数量 | 已解决 |
2025-01-28 | 9分客户最爱去的Top3餐厅 | 已解决 |
2025-01-27 | 基于消费天数和平均消费金额NTILE分组计算每个用户的RFM评分 | 已解决 |
2025-01-27 | 整体的点击率 | 已解决 |
2025-01-27 | 从商品角度统计收藏到购买的转化率 | 已解决 |
2025-01-26 | 数学成绩分段统计(3) | 已解决 |
2025-01-25 | 得物面试真题(4)首单Mac二单iPhone的客户 | 已解决 |
2025-01-25 | 计算视频的平均观看完成率 | 已解决 |
2025-01-25 | 深圳气温异常年份 | 已解决 |
2025-01-24 | 计算车方和司机被禁止的比率 | 已解决 |
2025-01-24 | 不同时段的热门搜索词 | 已解决 |
2025-01-24 | 10月1日后再也没活跃过的用户 | 已解决 |
2025-01-24 | 晚时段专车比例 | 已解决 |
2025-01-24 | 用户听歌完成情况 | 已解决 |
2025-01-24 | 最受欢迎歌手 | 未解决 |
2025-01-24 | 歌曲流行度分析 | 已解决 |
2025-01-23 | 只买iPhone的用户 | 已解决 |
2025-01-23 | 查询所有起点和终点都属于餐饮类别的行程 | 已解决 |
2025-01-23 | 给商品打四类标签(行) | 已解决 |
2025-01-23 | 只被收藏未被购买的商品 | 已解决 |
2025-01-22 | 小丑竟是我自己 | 已解决 |
2025-01-22 | 比较男女收发红包的差异 | 未解决 |
2025-01-22 | 收到520红包用户的平均年龄 | 未解决 |
2025-01-22 | 各行业第一家上市公司 | 已解决 |
2025-01-22 | 找出所有以酒店为起点的类别组合的最热门路线 | 已解决 |
2025-01-22 | 每个行业最早上市的公司 | 已解决 |
2025-01-22 | 各地区包含“中国”或“中”字开头的公司数量及比例 | 已解决 |
2025-01-22 | 各班第一名 | 已解决 |
2025-01-21 | 用户听歌多元化标签 | 已解决 |
评论笔记
评论日期 | 题目名称 | 评论内容 | 站长评论 |
---|---|---|---|
2025-03-05 | 哔哩哔哩面试真题(6)全年会员收入分类  | ||
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(6)-好基友(5)  | ||
2025-02-26 | 好友步数排名-不考虑反向好友关系  | ||
2025-02-26 | 不经过第二象限的所有函数  | ||
2025-02-25 | 每个商品的用户性别分布  | ||
2025-02-21 | 滴滴面试真题(4)未完成订单在第二天继续呼叫的比例  | ||
2025-02-21 | 播放量最高的标签  | ||
2025-02-21 | 计算完播率(按人数)  | ||
2025-02-21 | 总播放时长最长的视频  | ||
2025-02-21 | 滴滴面试真题(4)未完成订单在第二天继续呼叫的比例  | ||
2025-02-20 | 快手面试真题(3)同时在线人数峰值时点  | ||
2025-02-20 | 快手面试真题(2)同时在线人数峰值  | ||
2025-02-20 | 分类别人均在线时长最火直播间  | ||
2025-02-20 | 分类别人均在线时长最火直播间  | ||
2025-02-19 | 北京有雪的日子  | ||
2025-02-19 | 计算每天的有效订单完成率  | ||
2025-02-19 | 计算每个城市的有效订单完成率  | ||
2025-02-19 | 夜深与专车比例的相关系数  | ||
2025-02-19 | 滴滴面试真题(4)未完成订单在第二天继续呼叫的比例  | ||
2025-02-19 | 滴滴面试真题(3)UTC转化后的本地时间呼叫高峰期  | ||
2025-02-19 | 滴滴面试真题(2)打车订单呼叫应答时间  | ||
2025-02-19 | 夜深与专车比例的相关系数  | ||
2025-02-18 | 会员与非会员的日均观看视频数量  | ||
2025-02-18 | 会员与非会员的日均观看视频数量  | ||
2025-02-18 | 会员与非会员的日均观看视频数量  | ||
2025-02-18 | 每个视频类型的T+3留存率  | ||
2025-02-18 | 每个视频类型的T+3留存率  | ||
2025-02-18 | 每天新增用户的会员转化比例  | ||
2025-02-18 | 每天新增用户的会员转化比例  | ||
2025-02-18 | 频道重合指数  | ||
2025-02-17 | 多类别观看指数计算  | ||
2025-02-16 | 基于共同兴趣爱好的餐厅推荐(4)-好基友(2)  | ||
2025-02-16 | 基于共同兴趣爱好的餐厅推荐(4)-好基友(2)  | ||
2025-02-14 | 绘制小时进入人数曲线  | ||
2025-02-14 | 优异物理成绩的分布  | ||
2025-02-14 | 数学成绩分段统计(1)  | ||
2025-02-14 | S1年级物理成绩前10名(2)  | ||
2025-02-14 | S1年级物理成绩前10名(1)  | ||
2025-02-14 | 每月新增用户占比  | ||
2025-02-13 | 餐厅的客单价增长趋势  | ||
2025-02-13 | 只观看放映厅的用户  | ||
2025-02-12 | 2020年后上市的医药公司  | ||
2025-02-12 | 至少两门科目大于等于110分的学生  | ||
2025-02-12 | 查询所有正在进行中的促销活动  | ||
2025-02-11 | 一元一次函数形成的等腰三角形  | ||
2025-02-11 | 10月1日后再也没活跃过的用户  | ||
2025-02-10 | 7月之后再也没活跃过的用户  | ||
2025-02-10 | 7月之后再也没活跃过的用户  | ||
2025-02-10 | 抖音面试真题(5)新用户的T+1月留存  | ||
2025-02-10 | 抖音面试真题(4)T+1月留存  | ||
2025-02-10 | 抖音面试真题(4)T+1月留存  | ||
2025-02-10 | 抖音面试真题(4)T+1月留存  | ||
2025-02-10 | 抖音面试真题(3)一次性计算T+3、T+7、T+14留存率(2)  | ||
2025-02-10 | 抖音面试真题(2)一次性计算T+1、T+3、T+7、T+14留存率  | ||
2025-02-09 | 客群分布直方图  | ||
2025-02-09 | 4分及以下客户去的最后一家餐厅  | ||
2025-02-09 | 9分客户最爱去的Top3餐厅  | ||
2025-02-09 | 9分客户最爱去的Top3餐厅  | ||
2025-02-08 | 基于消费天数和平均消费金额NTILE分组计算每个用户的RFM评分  | ||
2025-02-08 | 基于消费天数和平均消费金额NTILE分组计算每个用户的RFM评分  | ||
2025-02-08 | 直观对比两种频率计算的差异(F)  | ||
2025-02-08 | 大结局(😊)渣男9月爽翻天,罪证送他去西天  | ||
2025-02-08 | 大结局(😊)渣男9月爽翻天,罪证送他去西天  | ||
2025-02-07 | 十大恩客你排第一,给钱金主数你多  | ||
2025-02-07 | 十大恩客你排第一,给钱金主数你多  | ||
2025-02-07 | 双脚踏进足浴门,从此再无心上人  | ||
2025-02-07 | 窗口函数(7)三天吃四餐,你特么是不是乔杉?  | ||
2025-02-07 | 窗口函数(6)隔三差五去召妓,统计间隔用偏移  | ||
2025-02-07 | 窗口函数(5)越来越喜欢召妓,窗口函数用累计(3)  | ||
2025-02-07 | 窗口函数(5)越来越喜欢召妓,窗口函数用累计(3)  | ||
2025-02-07 | 窗口函数(3)越来越喜欢召妓,窗口函数用累计(1)  | ||
2025-02-07 | 窗口函数(2)所有前一和每类前一,继续搞懂排序窗口函数  | ||
2025-02-07 | 窗口函数(2)所有前一和每类前一,继续搞懂排序窗口函数  | ||
2025-02-07 | 时间日期(5)三腿爱往会所走,全当良心喂了狗  | ||
2025-02-06 | 表连接(1)你们难道都去过?那就试试用InnerJoin  | ||
2025-02-05 | 时间日期(2)按月统计日花费,一天都不要浪费  | ||
2025-02-05 | 表连接(4)渣男把钱花在哪儿,维表可以来帮忙  | ||
2025-02-05 | 表连接(1)你们难道都去过?那就试试用InnerJoin  | ||
2025-02-05 | 小结(2)越花越多是死罪,按月统计Substr  | ||
2025-02-05 | 小结(1)大数据早就能扫黄,找足证据不慌张  | ||
2025-02-05 | 字符串与通配符(2)好多关键词做规则,可以使用rlike  | ||
2025-02-05 | 条件过滤(1)异地男友有异常,数分闺蜜来帮忙  | ||
2025-02-02 | 收到520红包用户的平均年龄  | ||
2025-01-28 | 哔哩哔哩面试真题(1)按日分摊会员收入  | ||
2025-01-28 | 统计每一类RFM用户的数量  | ||
2025-01-28 | 4分及以下客户去的最后一家餐厅  | ||
2025-01-27 | 基于消费天数和平均消费金额NTILE分组计算每个用户的RFM评分  | ||
2025-01-27 | 计算每个用户的购买频率-天数(F)  | ||
2025-01-27 | 整体的点击率  | ||
2025-01-27 | 从商品角度统计收藏到购买的转化率  | ||
2025-01-27 | 从商品角度统计收藏到购买的转化率  | ||
2025-01-26 | 数学成绩分段统计(3)  | ||
2025-01-26 | 数学成绩分段统计(2)  | ||
2025-01-26 | 各班第一名  | ||
2025-01-26 | 计算车方和司机被禁止的比率  | ||
2025-01-26 | 深圳气温异常年份  | ||
2025-01-25 | 得物面试真题(4)首单Mac二单iPhone的客户  | ||
2025-01-25 | 得物面试真题(3)第一单为Mac的用户  | ||
2025-01-25 | 得物面试真题(1)每周iPhone用户和非iPhone用户  | ||
2025-01-25 | 深圳气温异常年份  | ||
2025-01-24 | 计算车方和司机被禁止的比率  | ||
2025-01-24 | 不同时段的热门搜索词  | ||
2025-01-24 | 不经过第三象限的一元一次函数  | ||
2025-01-24 | 10月1日后再也没活跃过的用户  | ||
2025-01-24 | 10月1日后再也没活跃过的用户  | ||
2025-01-24 | 晚时段专车比例  | ||
2025-01-24 | 最受欢迎歌手  | ||
2025-01-24 | 歌曲流行度分析  | ||
2025-01-24 | 非港台歌手的专辑数量  | ||
2025-01-24 | 拼接歌曲名和专辑名  | ||
2025-01-23 | 计算完播率(按次数)  | ||
2025-01-23 | 给商品打四类标签(行)  | ||
2025-01-23 | 给商品打四类标签(行)  | ||
2025-01-22 | 收到520红包用户的平均年龄  | ||
2025-01-22 | 各行业第一家上市公司  | ||
2025-01-22 | 5月3日的所有打车记录  | ||
2025-01-22 | 查询所有起点和终点都属于餐饮类别的行程  | ||
2025-01-22 | 每个行业最早上市的公司  | ||
2025-01-22 | 每个行业最早上市的公司  | ||
2025-01-22 | 各地区包含“中国”或“中”字开头的公司数量及比例  | ||
2025-01-22 | 各地区包含“中国”或“中”字开头的公司数量及比例  | ||
2025-01-22 | 化学老师的教学成果  | ||
2025-01-21 | 找出与X轴交点小于等于0的一元一次函数  | ||
2025-01-21 | 找出与X轴交点大于0的一元一次函数  | ||
2025-01-21 | 各地区包含“中国”或“中”字开头的公司数量及比例  | ||
2025-01-21 | 各地区包含“中国”或“中”字开头的公司数量及比例  | ||
2025-01-21 | 按交易所统计软件服务、银行上市公司数量(2)  | ||
2025-01-21 | 按交易所统计软件服务、银行上市公司数量  | ||
2025-01-17 | 优异物理成绩的分布  | ||
2025-01-17 | 小结-从不缺考的学生  | ||
2025-01-16 | 文科潜力股  | ||
2025-01-07 | 每日新增用户  | ||
2025-01-07 | 统计每个城市各状态的单量  | ||
2025-01-07 | 计算车方和司机被禁止的比率  | ||
2025-01-07 | 计算每天的有效订单完成率  | ||
2025-01-07 | 计算每个城市的有效订单完成率  | ||
2025-01-07 | 21世纪上市的银行  | ||
2024-12-29 | 表连接(1)你们难道都去过?那就试试用InnerJoin  | ||
2024-12-29 | 城市平均最高气温  | ||
2024-12-29 | 城市平均最高气温  | ||
2024-12-28 | 分组与聚合函数(2)擦边营收怎么样,聚合函数可看出  | ||
2024-12-28 | 用户"kjhd30"的第一笔未完成订单  | ||
2024-12-26 | 查询播放量为0的歌手及其专辑  | ||
2024-12-26 | 用户听歌习惯的时间分布  | ||
2024-12-25 | 登录天数分布  | ||
2024-12-23 | 至少两门科目大于等于110分的学生  | ||
2024-12-23 | 上月活跃用户数  | ||
2024-12-22 | 热门搜索关键词  | ||
2024-12-22 | 德州扑克起手牌-最强起手牌KK+  | ||
2024-12-17 | 每年在深交所上市的银行有多少家  | ||
2024-12-01 | 时间日期(2)按月统计日花费,一天都不要浪费  | ||
2024-11-30 | 时间日期(2)按月统计日花费,一天都不要浪费  | ||
2024-11-30 | 表连接(4)渣男把钱花在哪儿,维表可以来帮忙  | ||
2024-11-29 | 小结(1)大数据早就能扫黄,找足证据不慌张  | ||
2024-11-28 | 条件过滤(2)半夜活动有猫腻,Hour函数给给力  |
提交记录
提交日期 | 题目名称 | 提交代码 |
---|---|---|
2025-03-05 | 哔哩哔哩面试真题(6)全年会员收入分类  |
SELECT CAST(SUM(CASE WHEN pay_amount = 144 THEN pay_amount / (DATEDIFF(end_date,begin_date)+1) ELSE NULL END) AS DECIMAL(10,2)) AS yearly, cast(SUM(CASE WHEN pay_amount = 90 THEN pay_amount / (DATEDIFF(end_date,begin_date)+1) ELSE NULL END) AS DECIMAL(10,2)) AS half_yearly, cast(SUM(CASE WHEN pay_amount = 51 THEN pay_amount / (DATEDIFF(end_date,begin_date)+1) ELSE NULL END) AS DECIMAL(10,2)) AS quarterly, cast(SUM(CASE WHEN pay_amount = 19 THEN pay_amount / (DATEDIFF(end_date,begin_date)+1) ELSE NULL END) AS DECIMAL(10,2)) AS monthly FROM bilibili_m2 AS m2 LEFT JOIN bilibili_m1 AS m1 On m2.m_date BETWEEN m1.begin_date AND m1.end_date WHERE m2.m_date RLIKE '^2021' |
2025-03-05 | 哔哩哔哩面试真题(5)每月分摊会员收入  |
SELECT m2.y_m, CAST(SUM(pay_amount / (DATEDIFF(end_date,begin_date)+1)) AS decimal(10,2)) AS total_monthly_income FROM bilibili_m2 AS m2 LEFT JOIn bilibili_m1 AS m1 ON m2.m_date BETWEEN m1.begin_date AND m1.end_date WHERE m2.m_date RLIKE '^2021' GROUP By m2.y_m |
2025-03-05 | 哔哩哔哩面试真题(4)每周分摊会员收入  |
SELECT FLOOR((DAYOFYEAR(m2.m_date)-1)/7)+1 AS week_number, CAST(SUM(pay_amount/(DATEDIFF(end_date,begin_date)+1)) AS DECIMAL(10,2)) AS total_weekly_income FROM bilibili_m2 AS m2 LEFT JOIN bilibili_m1 AS m1 ON m2.m_date BETWEEN m1.begin_date AND m1.end_date WHERE m2.m_date RLIKE '^2021' GROUP BY week_number |
2025-03-05 | 哔哩哔哩面试真题(2)计算春节周会员收入  |
WITH user_daily_income AS ( SELECT user_id,begin_date,end_date, pay_amount/(DATEDIFF(end_date,begin_date) + 1) AS daily_income FROM bilibili_m1 ) SELECT CAST(SUM(daily_income) AS decimal(10,2)) FROM bilibili_m2 AS m2 LEFT JOIN user_daily_income AS ud ON m2.m_date BETWEEN ud.begin_date AND ud.end_date WHERE m2.m_date BETWEEN '2022-01-31' AND '2022-02-06' |
2025-03-05 | 哔哩哔哩面试真题(1)按日分摊会员收入  |
SELECT CAST(SUM(pay_amount/(DATEDIFF(end_date,begin_date)+1)) AS decimal(10,2)) AS total_daily_income FROM bilibili_m1 WHERE '2020-11-20' BETWEEN begin_date AND end_date |
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(6)-好基友(5)  |
WITH mch_nm_10000 AS ( SELECT cust_uid,mch_nm FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid,mch_nm ), cust_mch AS ( SELECT cust_uid,mch_nm FROM mt_trx_rcd1 GROUP BY cust_uid,mch_nm ) SELECT mn.cust_uid,cm.cust_uid FROM mch_nm_10000 AS mn JOIN cust_mch AS cm ON mn.cust_uid <> cm.cust_uid AND mn.mch_nm = cm.mch_nm GROUP BY mn.cust_uid,cm.cust_uid HAVING COUNT(*) = 14 |
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(6)-好基友(5)  |
WITH cust_the AS ( SELECT cust_uid From mt_trx_rcd1 GROUP BY cust_uid HAVING COUNT(DISTINCT CASE WHEN mch_nm IN ( SELECT DISTINCT mch_nm FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' ) THEN mch_nm ELSE NULL END) = 14 ), mch_nm_10000 AS ( SELECT cust_uid FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid ) SELECT mn.cust_uid,ct.cust_uid AS cust_uid_1 FROM mch_nm_10000 AS mn LEFT JOIN cust_the AS ct ON mn.cust_uid <> ct.cust_uid ORDER BY cust_uid_1 |
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(5)-好基友(4)  |
WITH cust_the AS ( SELECT cust_uid From mt_trx_rcd1 GROUP BY cust_uid HAVING COUNT(DISTINCT CASE WHEN mch_nm IN ('庄家界(千灯店)','黄记烘培宫廷桃酥王','品众素心素食餐厅','一枚帅哥做的菜') THEN mch_nm ELSE NULL END) = 4 ), mch_nm_10000 AS ( SELECT cust_uid FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid ) SELECT mn.cust_uid,ct.cust_uid AS cust_uid_1 FROM mch_nm_10000 AS mn LEFT JOIN cust_the AS ct ON mn.cust_uid <> ct.cust_uid ORDER BY cust_uid_1 |
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(5)-好基友(4)  |
WITH cust_the AS ( SELECT cust_uid From mt_trx_rcd1 GROUP BY cust_uid HAVING COUNT(DISTINCT CASE WHEN mch_nm IN ('庄家界(千灯店)','黄记烘培宫廷桃酥王','品众素心素食餐厅') THEN mch_nm ELSE NULL END) = 3 ), mch_nm_10000 AS ( SELECT cust_uid FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid ) SELECT mn.cust_uid,ct.cust_uid AS cust_uid_1 FROM mch_nm_10000 AS mn LEFT JOIN cust_the AS ct ON mn.cust_uid <> ct.cust_uid ORDER BY cust_uid_1 |
2025-03-04 | 基于共同兴趣爱好的餐厅推荐(4)-好基友(2)  |
WITH cust_two AS ( SELECT cust_uid FROM mt_trx_rcd1 GROUP BY cust_uid HAVING COUNT(DISTINCT CASE WHEN mch_nm IN ('庄家界(千灯店)','黄记烘培宫廷桃酥王') THEN mch_nm ELSE NULL END) = 2 ), mch_nm_10000 AS ( SELECT cust_uid FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid,mch_nm ) SELECT mn.cust_uid,ct.cust_uid AS cust_uid_1 FROM mch_nm_10000 ASmn JOIN cust_two AS ct ON mn.cust_uid <> ct.cust_uid GROUP BY mn.cust_uid,ct.cust_uid ORDER BY cust_uid_1 |
2025-03-01 | 基于共同兴趣爱好的餐厅推荐(3)-好基友(1)  |
WITH cust_mch AS ( SELECT cust_uid, mch_nm FROM mt_trx_rcd1 WHERE mch_nm = '兰州李晓明拉面馆' GROUP BY cust_uid, mch_nm ), mt10000_mch AS ( SELECT cust_uid FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid ) SELECT mm.cust_uid,cm.cust_uid AS cust_uid_1,cm.mch_nm FROM mt10000_mch AS mm LEFT JOIN cust_mch As cm ON mm.cust_uid <> cm.cust_uid ORDER BY cm.cust_uid |
2025-03-01 | 基于共同兴趣爱好的餐厅推荐(2)-还有谁吃过  |
SELECT cust_uid,mch_nm FROM mt_trx_rcd1 WHERE mch_nm = '兰州李晓明拉面馆' GROUP BY cust_uid,mch_nm ORDER BY cust_uid |
2025-03-01 | 基于共同兴趣爱好的餐厅推荐(1)-我吃过啥  |
SELECT cust_uid,mch_nm FROM mt_trx_rcd1 WHERE cust_uid = 'MT10000' GROUP BY cust_uid,mch_nm ORDER BY mch_nm |
2025-02-26 | 好友步数排名-考虑反向好友关系  |
WITH user_friend AS ( SELECT fr.user1 AS user_id,fr.user2 AS friend_id,us.steps FROM friend_relationships AS fr LEFT JOIN user_steps AS us ON fr.user2 = us.user_id UNION SELECT fr.user2,fr.user1,us.steps FROM friend_relationships AS fr LEFT JOIN user_steps AS us ON fr.user1 = us.user_id UNION SELECT user_id,user_id,steps FROM user_steps ), step_rnk AS ( SELECT user_id,friend_id,steps, RANK() OVER(PARTITION BY user_id ORDER BY steps DESC) AS row_num FROM user_friend ) SELECT user_id,row_num FROM step_rnk WHERE user_id = friend_id ORDER By user_id |
2025-02-26 | 好友步数排名-考虑反向好友关系  |
WITH user_friend AS ( SELECT user1 AS user_id, user2 AS friend_id FROM friend_relationships UNION SELECT user2,user1 FROM friend_relationships UNION SELECT user1,user1 FROM friend_relationships ), step_rnk AS ( SELECT uf.user_id,uf.friend_id,us.steps, RANK() OVER(PARTITION BY user_id ORDER BY steps DESC) AS row_num FROM user_friend AS uf LEFT JOIN user_steps AS us ON us.user_id = uf.friend_id ) SELECT * FROM step_rnk |
2025-02-26 | 好友步数排名-不考虑反向好友关系  |
WITH fri_rela AS ( SELECT fr.user1,fr.user2,us.steps FROM user_steps AS us LEFT JOIN friend_relationships AS fr ON fr.user2 = us.user_id UNION SELECT user_id,user_id,steps FROM user_steps ORDER BY user1,user2 ) ,fri_rela_rnk AS ( SELECT user1,user2, RANK() OVER(PARTITION BY user1 ORDER BY steps DESC) AS row_num FROM fri_rela ) SELECT user1 As user_id,row_num FROM fri_rela_rnk WHERE user1 = user2 ORDER By user_id |
2025-02-26 | 好友步数排名-不考虑反向好友关系  |
WITH fri_rel AS ( SELECT user1,user2 FROM friend_relationships UNION SELECT user1,user1 FROM friend_relationships ) , step_rnk AS ( SELECT fr.*,us.steps, RANK() OVER(PARTITION BY fr.user1 ORDER BY us.steps DESC) AS row_num FROM fri_rel AS fr JOIN user_steps AS us ON fr.user2 = us.user_id ORDER BY fr.user1,fr.user2 ) SELECT user1 AS user_id,row_num FROM step_rnk WHERE user1 = user2 ORDER BY user_id |
2025-02-26 | 查询播放量为0的歌手及其专辑  |
SELECT si.singer_id,si.singer_name,ai.album_id,ai.album_name, SUM(CASE WHEN lr.start_time IS NOT NULL THEN 1 ELSE 0 END) AS play_count FROM singer_info AS si LEFT JOIN album_info AS ai ON si.singer_id = ai.singer_id LEFT JOIN song_info AS so ON so.album_id = ai.album_id LEFT JOIN listen_rcd AS lr ON lr.song_id = so.song_id GROUP BY si.singer_id,si.singer_name,ai.album_id,ai.album_name HAVING play_count = 0 |
2025-02-26 | 不经过第二象限的所有函数  |
SELECT * FROM numbers_for_fun WHERE (a = 0 AND b = 0 AND c <= 0) OR (a = 0 AND b > 0 AND c <= 0) OR (a < 0 AND -b/2*a >= 0 AND c <= 0) OR (a < 0 AND -b/2*a < 0 AND 4*a*c-b*b >= 0) ORDER BY id |
2025-02-26 | 不经过第二象限的所有函数  |
SELECT * FROM numbers_for_fun WHERE (a = 0 AND b = 0 AND c <= 0) OR (a = 0 AND b > 0 AND c <= 0) OR (a < 0 AND -b/2*a >= 0 AND c <= 0) OR (a < 0 AND -b/2*a < 0 AND 4*a*c-b*b <= 0) ORDER BY id |